3.9.58 \(\int \frac {1}{a+b x^2+c x^4} \, dx\) [858]

3.9.58.1 Optimal result
3.9.58.2 Mathematica [A] (verified)
3.9.58.3 Rubi [A] (verified)
3.9.58.4 Maple [C] (verified)
3.9.58.5 Fricas [B] (verification not implemented)
3.9.58.6 Sympy [A] (verification not implemented)
3.9.58.7 Maxima [F]
3.9.58.8 Giac [B] (verification not implemented)
3.9.58.9 Mupad [B] (verification not implemented)

3.9.58.1 Optimal result

Integrand size = 14, antiderivative size = 150 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)*c^(1/2)/(-4 
*a*c+b^2)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-arctan(x*2^(1/2)*c^(1/2)/(b+( 
-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)*c^(1/2)/(-4*a*c+b^2)^(1/2)/(b+(-4*a*c+b^ 
2)^(1/2))^(1/2)
 
3.9.58.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.86 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=\frac {\sqrt {2} \sqrt {c} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c}} \]

input
Integrate[(a + b*x^2 + c*x^4)^(-1),x]
 
output
(Sqrt[2]*Sqrt[c]*(ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]]/ 
Sqrt[b - Sqrt[b^2 - 4*a*c]] - ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 
 - 4*a*c]]]/Sqrt[b + Sqrt[b^2 - 4*a*c]]))/Sqrt[b^2 - 4*a*c]
 
3.9.58.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1406, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 1406

\(\displaystyle \frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx}{\sqrt {b^2-4 a c}}-\frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{\sqrt {b^2-4 a c}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}\)

input
Int[(a + b*x^2 + c*x^4)^(-1),x]
 
output
(Sqrt[2]*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/ 
(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]*ArcTan[ 
(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[ 
b + Sqrt[b^2 - 4*a*c]])
 

3.9.58.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1406
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^ 
2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q   I 
nt[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c 
, 0] && PosQ[b^2 - 4*a*c]
 
3.9.58.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.05 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.25

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}\right )}{2}\) \(38\)
default \(4 c \left (-\frac {\sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )\) \(117\)

input
int(1/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/2*sum(1/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.9.58.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 613 vs. \(2 (114) = 228\).

Time = 0.26 (sec) , antiderivative size = 613, normalized size of antiderivative = 4.09 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=-\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x + \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c - \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x - \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c - \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) - \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x + \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c + \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x - \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c + \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) \]

input
integrate(1/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
-1/2*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^ 
2 - 4*a^2*c))*log(2*c*x + sqrt(1/2)*(b^2 - 4*a*c - (a*b^3 - 4*a^2*b*c)/sqr 
t(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c) 
)/(a*b^2 - 4*a^2*c))) + 1/2*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^ 
2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(2*c*x - sqrt(1/2)*(b^2 - 4*a*c - 
(a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2 - 4*a^2*c)/ 
sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) - 1/2*sqrt(1/2)*sqrt(-(b - (a 
*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(2*c*x + sq 
rt(1/2)*(b^2 - 4*a*c + (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(- 
(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) + 1/2* 
sqrt(1/2)*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4 
*a^2*c))*log(2*c*x - sqrt(1/2)*(b^2 - 4*a*c + (a*b^3 - 4*a^2*b*c)/sqrt(a^2 
*b^2 - 4*a^3*c))*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a* 
b^2 - 4*a^2*c)))
 
3.9.58.6 Sympy [A] (verification not implemented)

Time = 0.57 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.58 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{3} c^{2} - 128 a^{2} b^{2} c + 16 a b^{4}\right ) + t^{2} \left (- 16 a b c + 4 b^{3}\right ) + c, \left ( t \mapsto t \log {\left (x + \frac {32 t^{3} a^{2} b c - 8 t^{3} a b^{3} + 4 t a c - 2 t b^{2}}{c} \right )} \right )\right )} \]

input
integrate(1/(c*x**4+b*x**2+a),x)
 
output
RootSum(_t**4*(256*a**3*c**2 - 128*a**2*b**2*c + 16*a*b**4) + _t**2*(-16*a 
*b*c + 4*b**3) + c, Lambda(_t, _t*log(x + (32*_t**3*a**2*b*c - 8*_t**3*a*b 
**3 + 4*_t*a*c - 2*_t*b**2)/c)))
 
3.9.58.7 Maxima [F]

\[ \int \frac {1}{a+b x^2+c x^4} \, dx=\int { \frac {1}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(1/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(1/(c*x^4 + b*x^2 + a), x)
 
3.9.58.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1026 vs. \(2 (114) = 228\).

Time = 0.90 (sec) , antiderivative size = 1026, normalized size of antiderivative = 6.84 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=\frac {{\left (\sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} c - 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} + 16 \, a b^{2} c^{2} + 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a c^{3} - 32 \, a^{2} c^{3} - 8 \, a b c^{3} - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} + 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c + 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c - 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {b + \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{4 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} + \frac {{\left (\sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} c + 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} - 16 \, a b^{2} c^{2} - 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a c^{3} + 32 \, a^{2} c^{3} + 8 \, a b c^{3} + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} - 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c + 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {b - \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{4 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} \]

input
integrate(1/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
1/4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c + sq 
rt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 
*c - 2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt 
(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*b^2*c^2 + 16*a*b^2*c^2 + 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c 
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b 
*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b^2*c - 8*(b^2 - 4*a*c)*a*c^2 - 2*(b^2 
 - 4*a*c)*b*c^2)*arctan(2*sqrt(1/2)*x/sqrt((b + sqrt(b^2 - 4*a*c))/c))/((a 
*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4* 
a^2*c^3)*abs(c)) + 1/4*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sq 
rt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c - sqrt( 
b^2 - 4*a*c)*c)*b^3*c + 2*b^4*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)* 
c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*s 
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^2 - 16*a*b^2*c^2 - 2*b^3*c^2 - 4*sqrt 
(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 + 32*a^2*c^3 + 8*a*b*c^3 + sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 - 4*sqrt(2)*sqrt( 
b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - 2*sqrt(2)*sqrt(b^2...
 
3.9.58.9 Mupad [B] (verification not implemented)

Time = 13.46 (sec) , antiderivative size = 763, normalized size of antiderivative = 5.09 \[ \int \frac {1}{a+b x^2+c x^4} \, dx=-\mathrm {atan}\left (\frac {b^4\,x\,1{}\mathrm {i}+b\,x\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}+a^2\,c^2\,x\,16{}\mathrm {i}-a\,b^2\,c\,x\,8{}\mathrm {i}}{4\,a\,b^4\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}+64\,a^3\,c^2\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}-32\,a^2\,b^2\,c\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}}\right )\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {b^4\,x\,1{}\mathrm {i}-b\,x\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}+a^2\,c^2\,x\,16{}\mathrm {i}-a\,b^2\,c\,x\,8{}\mathrm {i}}{4\,a\,b^4\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}+64\,a^3\,c^2\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}-32\,a^2\,b^2\,c\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}}\right )\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}\,2{}\mathrm {i} \]

input
int(1/(a + b*x^2 + c*x^4),x)
 
output
- atan((b^4*x*1i + b*x*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1 
/2)*1i + a^2*c^2*x*16i - a*b^2*c*x*8i)/(4*a*b^4*(-(b^3 + (b^6 - 64*a^3*c^3 
 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 
64*a^2*b^2*c))^(1/2) + 64*a^3*c^2*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2* 
c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c)) 
^(1/2) - 32*a^2*b^2*c*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b 
^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)))*(-( 
b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(8 
*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)*2i - atan((b^4*x*1i - b*x*(b^6 
 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2)*1i + a^2*c^2*x*16i - a* 
b^2*c*x*8i)/(4*a*b^4*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1 
/2) - b^3 + 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2) + 64*a^ 
3*c^2*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a 
*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2) - 32*a^2*b^2*c*(((b^6 
- 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(8*a*b^ 
4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)))*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2* 
c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b 
^2*c))^(1/2)*2i